「結晶学と構造物性」6.3.2 節修正情報

	修正前	修正後
p.106 式 (6.28)	$e^{-2\pi i k \Delta \xi} = 1$	$e^{2\pi i k \Delta \xi} = 1$
p.107 式 (6.30)	$I = I_{\rm e} \left \int \rho(\mathbf{r}) \mathrm{e}^{2\pi i (\mathbf{k}_{\rm i} - \mathbf{k}_{\rm f}) \cdot \mathbf{r}} dV \right ^2$	$I = I_{\rm e} \left \int \rho(\mathbf{r}) e^{-2\pi i (\mathbf{k}_{\rm i} - \mathbf{k}_{\rm f}) \cdot \mathbf{r}} dV \right ^2$
〃 式 (6.31)	$F_{\text{sample}}(\mathbf{Q}) = \int_{\text{all}} \rho(\mathbf{r}) \mathrm{e}^{-2\pi i \mathbf{Q} \cdot \mathbf{r}} dV$	$F_{\text{sample}}(\mathbf{Q}) = \int_{\text{all}} \rho(\mathbf{r}) \mathrm{e}^{2\pi i \mathbf{Q} \cdot \mathbf{r}} dV$
p.108 式 (6.35)	$F_{\text{sample}}(\mathbf{Q}) = \int_{o} \rho(\mathbf{r}_{o}) e^{-2\pi i \mathbf{Q} \cdot \mathbf{r}_{o}} dV_{o} \cdot \sum_{n_{1}n_{2}n_{3}}^{N_{1}N_{2}N_{3}} e^{-2\pi i \mathbf{Q} \cdot \mathbf{t}_{n}}$	$F_{\text{sample}}(\mathbf{Q}) = \int_{o} \rho(\mathbf{r}_{o}) e^{2\pi i \mathbf{Q} \cdot \mathbf{r}_{o}} dV_{o} \cdot \sum_{n_{1}n_{2}n_{3}}^{N_{1}N_{2}N_{3}} e^{2\pi i \mathbf{Q} \cdot \mathbf{t}_{n}}$
〃 式 (6.37)	$F(\mathbf{Q}) = \int \rho(\mathbf{r}) \mathrm{e}^{-2\pi i \mathbf{Q} \cdot \mathbf{r}} dV$	$F(\mathbf{Q}) = \int \rho(\mathbf{r}) \mathrm{e}^{2\pi i \mathbf{Q} \cdot \mathbf{r}} dV$
〃 式 (6.38)	$L(h,k,l;N_1,N_2,N_3) = \left \sum_{n_1n_2n_3}^{N_1N_2N_3} e^{-2\pi i \mathbf{Q} \cdot \mathbf{t}_n}\right ^2$	$L(h, k, l; N_1, N_2, N_3) = \left \sum_{n_1 n_2 n_3}^{N_1 N_2 N_3} e^{2\pi i \mathbf{Q} \cdot \mathbf{t}_n} \right ^2$
〃 式 (6.39)	$ F(\mathbf{Q}) ^2 = F(\mathbf{Q})F^*(\mathbf{Q}) = \iint \rho(\mathbf{r})\rho(\mathbf{r}')e^{-2\pi i\mathbf{Q}\cdot(\mathbf{r}-\mathbf{r}')}dVdV'$	$ F(\mathbf{Q}) ^{2} = F(\mathbf{Q})F^{*}(\mathbf{Q}) = \iint \rho(\mathbf{r})\rho(\mathbf{r}')e^{2\pi i\mathbf{Q}\cdot(\mathbf{r}-\mathbf{r}')}dVdV'$

(2017.2)

	修正前	修正後
p.106 下から 9 行目より	次に、たくさんある原子あるいはそれに付随した電子から散乱した平面波の 重ね合わせを考えましょう. +k方向に進む波は $\exp(2\pi i (\nu t - \mathbf{k} \cdot \mathbf{r}))$ と書かれ ます. 図 6.5 に示したように、まず、入射 X 線 $\exp(2\pi i (\nu t - \mathbf{k}_i \cdot \mathbf{r}))$ が原点 O で散乱されて $\exp(2\pi i (\nu t - \mathbf{k}_f \cdot \mathbf{r}))$ の平面波として R に到達したとします. こ れは原点にある 1 個 ···	次に、たくさんある原子あるいはそれに付随した電子から散乱した平面波の 重ね合わせを考えましょう、+k 方向に進む波は exp $(2\pi i(\nu t - \mathbf{k} \cdot \mathbf{r}))$ と書か れます。なぜそのように書かれるかを図6.5 の上に示します。簡単のためにサ イン波で説明します。 $t = 0$ で実線で表した波は $t = t_1$ では点線で表した波に なります。原点での振幅は sin $(2\pi i(\nu t_1))$ と増加します。一方、 $t = 0$ で $x = 0$ の点は $t = t_1$ で $x = x_1$ に移動します。これを位相空間で表したのが左の図 で、原点の $t = 0$ での位相は $t = t_1$ で反時計方向に進みます。 $x = x_1$ での位 相は $t = t_1$ になって初めて原点での $t = 0$ での位相と同じになります。つま り、 $x = x_1$ で $t = 0$ の位相は $-kx_1$ だけ遅れていることになります。つま り、 $x = x_1$ で $t = 0$ の位相は $-kx_1$ だけ遅れていることになります。 x が大き くなるほど位相は遅れていることになり、同じ位相になるのには進行波がやっ てくる時間がかかると言うことです。 それでは、散乱した平面波の重ね合わせを考えましょう。図6.5 の下に示 したように、まず、入射 X 線 exp $(2\pi i(\nu t - \mathbf{k}_i \cdot \mathbf{r}))$ が原点 O で散乱されて exp $(2\pi i(\nu t - \mathbf{k}_i \cdot \mathbf{r}))$ の平面波として R に到達したとします。これは原点にあ る 1 個 …

	修正前	修正後
p.107 上から 1 行目より	そこで、この2箇所からの波の位相差を計算しましょう. 図 6.5 から分かるように、ベクトル r の $\mathbf{k}_i \geq \mathbf{k}_f$ への射影を考えればよいことになり、点 r からの 散乱波は原点 O からの散乱波を基準にして $-\mathbf{k} \cdot \mathbf{r}$ の項は $\exp(2\pi i (\mathbf{k}_i - \mathbf{k}_f) \cdot \mathbf{r})$ のように位相が遅れていることになります. ここで、図の関係では $\mathbf{k}_i \cdot \mathbf{r} \ge 0$ であり、 $\mathbf{k}_f \cdot \mathbf{r} \le 0$ です. 固体物理で k の中に 2π を含ませるのは、このような 計算を何度も行うので、 \exp の中の 2π を書かなくてすむようにしています	そこで、この2箇所からの波の位相差を計算しましょう、図 6.5 の下から分 かるように、ベクトル r の $\mathbf{k}_i \geq \mathbf{k}_f$ への射影を考えればよいことになります. 図 6.5 の下の左で、原点を通る波と r を通る波は点 A ₀ で位相が同じですが、 点 A ₁ で散乱される波は点 A ₂ を通って回り道をします、ここで、図の関係で は $\mathbf{k}_i \cdot \mathbf{r} \geq 0$ であり、 $\mathbf{k}_f \cdot \mathbf{r} \leq 0$ です、位相差としては $\mathbf{k}_i \cdot \mathbf{r} - \mathbf{k}_f \cdot \mathbf{r} \geq 0$ です. 図 6.5 の下の右には観測点である R での波を示しています、原点を通ってきた 基準となる波は点 B ₁ の $\mathbf{r} = \mathbf{R}, t = t_1$ で exp($2\pi i(\nu t_1 - \mathbf{k}_f \cdot \mathbf{R})$) と書き表さ れます、点 r を通ってきた散乱波でこの位相と同じなのは点 B ₂ であり、干渉 を考えている点 B ₃ の R では ($\mathbf{k}_i - \mathbf{k}_f$) · r だけ位相が遅れていることになり ます、式で書くと、exp($2\pi i(\nu t_1 - \mathbf{k}_f \cdot \mathbf{R} - (\mathbf{k}_i - \mathbf{k}_f) \cdot \mathbf{r})$ となります、した がって、二つの波の位相差は exp($-2\pi i(\mathbf{k}_i - \mathbf{k}_f) \cdot \mathbf{r})$ となります、 固体物理で \mathbf{k} の中に 2π を含ませるのは、このような計算を何度も行うので、 exp の中の 2π を書かなくてすむようにしています、

